UNCLASSIFIED | | AD NUMBER | |-------|------------------------| | | ADA800633 | | | CLASSIFICATION CHANGES | | TO: | unclassified | | FROM: | restricted | | | LIMITATION CHANGES | ## TO: Approved for public release; distribution is unlimited. # FROM: Distribution authorized to DoD only; Administrative/Operational Use; 25 AUG 1947. Other requests shall be referred to National Aeronautics and Space Administration, Washington, DC. Pre-dates formal DoD distribution statements. Treat as DoD only. # AUTHORITY NACA Research Abstracts no. 45 dtd 10 Jul 1953; NASA TR Server website # Reproduction Quality Notice This document is part of the Air Technical Index [ATI] collection. The ATI collection is over 50 years old and was imaged from roll film. The collection has deteriorated over time and is in poor condition. DTIC has reproduced the best available copy utilizing the most current imaging technology. ATI documents that are partially legible have been included in the DTIC collection due to their historical value. If you are dissatisfied with this document, please feel free to contact our Directorate of User Services at [703] 767-9066/9068 or DSN 427-9066/9068. # Do Not Return This Document To DTIC # Reproduced by AIR DOCUMENTS DIVISION HEADQUARTERS AIR MATERIEL COMMAND WRIGHT FIELD, DAYTON, OHIO # U.S. GOVERNMENT IS ABSOLVED FROM ANY LITIGATION WHICH MAY ENSUE FROM THE CONTRACTORS IN- FRINGING ON THE FOREIGN PATENT RIGHTS WHICH MAY BE INVOLVED. - COMMAND WRIGHT FIELD, DAYTON, OHIO # REEL-C ATI # RESTRICTED RESTRICTED 87 COPY NO. **RM No. E7G23** ATI No. # RESEARCH MEMORANDUM INVESTIGATION OF THRUST AUGMENTATION OF A 1600-POUND THRUST CENTRIFUGAL-FLOW-TYPE TURBOJET ENGINE BY INJECTION OF REFRIGERANTS AT COMPRESSOR INLETS By William L. Jones and Harry W. Dowman Flight Propulsion Research Laboratory Cleveland, Ohio This document contains classified information affecting the Mational Defense of the United States within the meaning of the Espionage Act, USC 50:31 and 32. Its transmission or the revelation of its contents any meanner to an unauthorized person is probibited by law. Information so classified say be imparted only to persons in the military and naval Services of the United States, appropriate civilize officers and employees of the Federal Covernment who have a legitiest interest therein, and to United States citisens of known loyalty and discretion who of necessity must be informed thereof. NATIONAL ADVISORY COMMITTEE **AERONAUTICS** WASHINGTON August 25, 1947 MACA PM No. 17023 RESTRICTED ### MATICMAL ADVISORY CONCUTTED FOR AEROMAUTICS. ### RESEARCH MEMORANDUM INVESTIGATION OF THRUST AUGMENTATION OF A 1600-POUND THEUST CENTRIFUGAL-FLOW-TYPE TURBOJET ENGINE BY INJECTION OF REFRIGERANTS AT · COMPRESSOR INLETS By William L. Jones and Harry W. Downan ### SUMMAPY The performance of a centrifugal-flow-type turbojet engine (having a normal military rating of 1600-1b thrust at a rotor speed of 16,500 rpm), has been investigated at zero flight speed with injection of refrigerants at the compressor inlats. The largest part of these investigations was devoted to the injection of water and water-alcohol mixtures; brief investigations were also conducted with the injection of kerosene and carbon dioxide. The engine performance with the injection of water was investigated over a range of rotor speeds. Three different exhaust-nozzle sizes were used in order to evaluate the thrust augmentation possible when an adjustable area exhaust nozzle is used. Various mixtures of water and alcohol were injected for a range of total flows up to 2.2 pounds per second. The runs with kerosene injected into the compressor inlets covered a range of injected flows up to approximately 30 percent of the normal engine fuel flow and were conducted over a range of rotor speeds. The carbon dioxide was injected in snow form from etandard 75-pound fire-extinguisher bottles and ite use was investigated both alone and with the injection of water and alcohol. The injection of 2.0 pounds per second of water alone would provide a thrust augmentation of 35.8 percent at rated engine conditions for operation with an adjustable-area exhaust nozzle. A maximum thrust augmentation at zero flight epeed of 40 percent was indicated at rated engine conditions for operation with an adjustable-area exhaust nozzle by injection of 1.6 pounds per second of water and 0.4 pound of alcohol per second. The injection of kerosene produced a negligible increase in thrust. A thrust augmentation of 23.5 percent was obtained with the injection RESTRICTED of 4.5 pounds per second of carbon dioxide alone. The injection of 3.5 pounds per second of carbon dioxide with a mixture of water and alcohol provided a thrust augmentation of 36 percent, 16 percent of which was contributed by the carbon dioxide. ### INTRODUCTION Thrust augmentation of turbojet engines to provide improved take-off, climb, and high-speed flight characteristics is of importance in increasing the effectiveness of the application of turbojet engines to both civilian and military aircraft. One of the methods of increasing the thrust of the turbojet engine is by the injection of refrigerants at the compressor inlets. This method increases the density of the air and the compressor Mach number. The increased density gives a higher mase flow through the engine and the increased compressor Mach number yields a higher pressure ratio across the compressor. Both of these factors increase the thrust of the engine. As part of a general research program being conducted at the MACA Cleveland laboratory to investigate various methods of thrust augmentation, the performance of a centrifugal-flow-type turbojet engine at zero flight speed and sea-level conditions with injection of water and water-alcohol mixtures has been determined. For the investigation reported, which was conducted during the fall of 1944, various mixtures of water and alcohol were used over a range of injected liquid flows. The engine performance with injection of water was determined over a range of rotor speede; the use of wateralcohol mixtures was investigated at two rotor speeds. Three different exhaust-nozzle sizes were used in order to evaluate the thrust augmentation possible if an adjustable-area exhaust nozzle The investigation with injection of water-alcohol mixtures was of importance because of: (a) the provision in the injected mixture of the extra fuel that is required for operation with water injection; (b) the possibility of choosing a mixture that would eliminate the need for adjustment of the fuel throttle during injection; and (c) the low freezing temperature of water-alcohol In addition to the investigation of engine performance with water and alcohol injection, brief investigations were also conducted with the injection of kerosene and carbon dioxide. The investigations The second secon The second second may a proper see with berosene injection covered a range of injected flows up to approximately 30 percent of the normal fuel flow and were conducted over a range of rotor speeds. The carbon dioxide was injected in snow form from standard 75-pound fire-extinguisher bottles and its use was investigated both alone and in conjunction with the injection of water and alcohol. ### **APPARATUS** ### General Setup The general arrangement of the test setup is shown in figure 1. The investigations were conducted on an I-16 turbojet engine (normal rating, 1600-1b thrust) that was rigidly mounted on a framework suspended from the ceiling of the test cell by four rods supported by ball-bearing pivots. The tail pipe of the engine extended through an air seal in the cutside wall of the test chamber. All supply lines to the engine were of flexible hose in order that restraining forces would be at a minimum. Lateral movement of the engine and the frame was prevented by means of ball-bearing guide rollers. The thrust exerted by the suspended engine was transmitted by a cranklever arrangement to the diaphragm of a calibrated balanced pressure cell. Measurement of the balancing pressure provided an indication of the engine thrust. The fuel flow (kerosene) to the engine was measured by calibrated rotameters. A chronometric tachometer was used to measure the rotor speed. The air supply to the engine entered the nearly airtight test chamber through an 18-inch throat-diameter A.S.M.E. standard air-measuring nozzle. diffuser, which had an area ratio of 4, was connected to the nozzle in order to convert the velocity pressure at the nozzle throat to static pressure in the test cell. The cell leakage, which was found by calibration to be less than 0.3 percent of the total air flow, was added to the measured air flow. An aluminum cowl and a wooden inlet-air nozzle were installed on the engine to restrict the inlet-air flow to an area in which the temperature could be accurately measured. ### Injection Equipment Water and alcohol injection. - Water and alcohol mixtures were injected through twenty 37.5-gallon-per-hour spray nozzles connected to a common manifold, as shown in figure 2. Ten nossles were equally A 100 - 100 spaced around each compressor-inlet screen. Water and alcohol flows were measured by calibrated orifices. The alcohol used in these investigations was approximately 50-percent methyl and 50-percent ethyl by weight. 21.0 Kerosene injection. - For the injection of kerosene, the engine fuel system was so revised that both the fuel injected into the compressor and the fuel supplied to the engine burner nozzles passed through the overspeed governor. Separate throttles were provided for each fuel line. The kerosene was injected into the compressor inlets through twenty 6.5-gallon-per-hour spray nozzles installed in the same manner as the water-alcohol injection nozzles. The total flow of kerosene to the engine was measured by a calibrated rotameter. The injected kerosene flows at the compressor inlets were determined by a flow calibration of the injection
nozzles. <u>Carbon-dioxide injection.</u> - The additional equipment required for the injection of carbon dioxide is shown in the foreground of the photograph presented in figure 5. (The injection manifold shown mounted on the inlet nozzle was not used during these runs.) Carbon dioxide from 75-pound-capacity fire extinguishers was injected into the inlet-air stream in snow form. Several bottles of carbon dioxide were discharged to obtain weight-flow calibrations. The results of five such calibrations are presented in figure 4 from which carbon-dioxide flows have been determined for these investigations. Although the data for these curves scatter somewhat, the trends indicate that the flow rate of carbon dioxide is dependent on its initial temperature with the greatest flow rates occurring at the highest temperature. ### Pressure and Temperature Instrumentation The stations at which the engine was instrumented for temperature and pressure measurements are shown in figure 2. The variables measured and the number, type, and location of instruments are: (a) Cowl-inlet total temperature T₀, average of six unshielded thermocouples in inlet-air nozzle March 18 Comment of the t The second second - (b) Cowl-inlet total pressure P₀, one open-end tube in test cell - (c) Compressor-outlet total temperature (inlet of burner 10) T_2 , one unshielded thermocouple Same and the state of American Security - (d) Compressor-outlet total temperature (inlet of burner 5) T_2 , one stagnation-type thermocouple - (e) Compressor-outlet static pressure (inlet of burner 9) p2, four static wall taps connected to a piezometer ring - (f) Compressor-outlet total pressure (inlet of burner 9) P2, one five-tube total pressure rake with all tubes connected to a common line - (g) Tail-pipe gas temperature T_7 , six aspirating-type thermocouples connected in parallel These measurements were read on potentiometers and manometers. ### PROCEDURE ### Water and Water-Alcohol Injection Five separate series of runs were conducted, three with water injection and two with water-alcohol injection. The conditions for the five runs are presented in the following table: | Run | Injected
liquid | Ex-
haust
nozzle
diam-
eter
(in.) | water | Injected
alcohol
flow
Wal
(1b/sec) | Total injected liquid flow Ww + Wal (lb/sec) | Rotor
speed
N
(rpm) | Cowl inlet-air tempera- ture range (°R) | |-----|--------------------|--|-------|--|--|------------------------------|---| | A | Water | · 12. 5 | 0-1.9 | 0 | 0-1.9 | 11,000- | 526 - 540 | | B | Water | 12.0 | 0-1,9 | 0 | 0-1.9 | | 529 - 540 | | C | Water | 11.5 | 0-1.9 | 0 | 0-1.9 | all,000-
16,000 | 533 - 555 | | D | Water-
alcohol | 12.0 | 0.5-0 | 0-0.5 | 0.5 | a16,000 | 537 - 543 | | E | Water-
alcohol | 12.0 | 1.5 | 0-0.6 | 1.5-2.1 | 16,000,
16,500 | 541 - 547 | Top speed limited by allowable tail-pipe gas temperature. Water-injection runs A, B, and C differed only in the eize of the exhaust nozzle used on the engine. Water-alcohol injection runs D and E were run with a 12-inch-dismeter exhaust nozzle and differed in the manner in which the proportion of water and alcohol were varied. In run D, the total injected flow of water and alcohol was held constant at approximately 0.5 pound per second and the proportions of each were varied. In run E, the injected water flow was held constant at 1.5 pounds per second and the alcohol rate was progressively increased from 0 to 0.6 pound per second. A second .. . Acres Prior to each run, engine performance was determined without injection in order to provide a basis for evaluating the thrust augmentation. ### Kerosene and Carbon-Dioxide Injection The investigation of the performance of a centrifugal-flow-type turbojet engine, which had a 12-inch-diameter exhaust nozzle, during injection of kerosene, carbon dioxide, and carbon dioxide with a water-alcohol mixture was conducted according to the following procedure: Kerosene injection. - The normal performance of the engine was determined prior to the injection of kerosene. Kerosene was injected into the compressor inlets of the turbojet engine in the same manner as the water and alcohol and the injected flows were varied from O to 603 pounds per hour. The rotor speed was varied from 14,000 rpm to 16,500 rpm; the inlet-air temperature was approximately 535° R. Carbon-dioxide injection. - The normal performance of the engine without injection was first established. The injection of carbon dioxide into the compressor inlets was then accomplished by eimultaneously opening the valves on four 75-pound capacity carbon-dioxide bottlee. The injected flow of carbon dioxide varied from 4.6 pounds per second at the beginning of the run to almost zoro at the end of the run. The engine was first operated at 16,500 rpm but the speed abruptly decreased when the injection valves were opened. When the rotor speed was stablized at 16,100 rpm, data were taken in quick succession until the contents of the bottles were depleted. The ambient cell temperature varied from 526° to 530° R. Carbon-dioxide injection with water-alcohol mixture. - The normal engine performance was first established. This determination was followed by an investigation of engine performance for the injection of a 9:8 mixture of water and alcohol. Then, while the The second secon Allen State of the second water and alcohol mixture was being injected at a rotor speed of approximately 16,500 rpm, the valves on three 75-pound capacity carbon-dioxide bottles were simultaneously opened. Readings were started 6 seconds after opening of the valves and were taken at 12-second intervals until the contente of the bottles were depleted. The variation in rotor speed was about 60 rpm for the run and the ambient cell temperature varied from 507° to 514° R. ### SYMBOLS The following symbols are used in this report: - F thrust, (1b) - h lower heating value of fuel, (Btu)/(lb) - K fuel-flow correction factor - M rotor speed, (rpm) - P total pressure, (lb)/(sq in. absolute) - p static pressure, (lb)/(sq in. absolute) - T indicated temperature, (OR) - t time, (sec) 5. 1. (本文) - Wa air flow, (lb)/(sec) - Wal injected alcohol flow, (lb)/(sec) - Wo injected carbon-dioxide flow, (lb)/(sec) - W_f fuel flow, (lb)/(hr) - W, injected kerosene flow, (lb)/(hr) - Www injected water flow, (lb)/(sec) - Wt total liquid consumption, (1b of fuel, water, alcohol, and carbon dioxide)/(sec) or (1b)/(hr) ### Subscripts: - 0 cowl inlet - 2 compressor outlet - 7 tail pipe corr corrected ### METHODS OF CORRECTION All performance data from water and water-alcohol injection runs were corrected to standard conditions at the cowl inlet by the following equations (the values without the subscript corr are observed data): $$\mathbf{r}_{\text{corr}} = \frac{\mathbf{r}}{\delta}$$ (1) $$H_{\text{corr}} = \frac{H}{\sqrt{6}} \tag{2}$$ $$P_{\text{corr}} = \frac{P}{5} \tag{5}$$ $$T_{\text{corr}} = \frac{T}{\theta} \tag{5}$$ $$W_{a \text{ corr}} = \frac{W_{a}\sqrt{\theta}}{a} \tag{6}$$ $$M_{al\ corr} = \frac{W_{al}\sqrt{\theta}}{a} \tag{7}$$ $$H^{A \text{ coll}} = \frac{\rho}{H^{A} \sqrt{\rho}} \tag{9}$$ $$W_{t \text{ ours}} = \frac{W_{al}\sqrt{\theta}}{8} + \frac{W_{v}\sqrt{\theta}}{8} + \frac{W_{f} R}{8\sqrt{\theta} 3600}$$ (9) $$W_{f \text{ corr}} = \frac{W_{f} K}{\delta \sqrt{\theta}}$$ (10) where the correction factors $\delta = \frac{\text{cowl-inlet total pressure } P_{O}}{\text{pressure of NACA standard atmosphere at sea level}}$ $\text{cowl-inlet total temperature } T_{O}$ temperature of MACA standard atmosphere at sea level $$K = 1 + \left(3600 \times 0.4 \frac{W_{ml}}{W_f}\right) \left(1 - \theta\right)$$ EMINE TO STATE OF THE accuracy of the correction of engine performance data with liquid injection to standard inlet conditions is somewhat questionable because of unknown effects of inlet-air temperature on the vaporization of the injected liquid. The corrections applied are therefore only approximate and probably limited to small ranges of inlet temperature such as contained in the present data. The correction equations are all valid if the corrected pressures and temperatures throughout the engine are related to the corresponding uncorrected values by the factors δ and θ . A theoretical analysis of the wet compression process indicates that if liquid-air ratio and compressor Mach number are held constant, the corrected pressures and temperatures will be related to the uncorrected values by the factors δ and θ , provided that: (1) the liquid is completely vaporized in the compressor, and (2) the variations in inlet conditions are small. The corrections are based on maintaining corrected values of water-air and alcohol-air ratios and Mach numbers the same as the uncorrected values. The water-air and alcohol-air ratios are maintained constant by correcting water and alcohol flows in the same manner as the air flow. Corrected and uncorrected Mach numbers of the flow through the engine are the same except for variations in the thermodynamic properties of the gases arising from (1) small changes (with correction) in fuel-air ratio (and, hence fuel-water and fuel-alcohol ratios), and (2) small changes in the yaporization processes in the compressor (with inlet conditions). The total liquid consumption of the engine consists of fuel (berosene), water, and alcohol, which provide or absorb heat in the engine combustion process. Because both the engine fuel and the injected alcohol provide heat during combustion, the resultant fuel flow must be corrected in a manner that accounts for the changes in alcohol flows arising from correction. The correction factor K, which takes into consideration the action of fuel and injected which takes into consideration the
action of fuel and injected alcohol, is derived from a simple heat-balance equation. The value alcohol, is derived from a simple heat-balance equation of the sffective of 4 in definition of K is an approximate ratio of the effective heating value of alcohol to the effective heating value of kerosene based on data from the water-alcohol injection runs. The performance data from runs with kerosene and carbon-dioxide injection are presented directly as read without correction for inlet conditions. # RESULTS AND DISCUSSION # Water and Water-Alcohol Injection The greater part of the investigation of engine performance was conducted with injection of the refrigerants that were considered of primary importance, namely, water and water-alcohol mixture. Water injection. - The observed and the corrected data of waterinjection runs A, B, and C are presented in table I. The curves presented in figure 5 show the variation in engine performance with injected water flow at a corrected rotor speed of 16,500 rpm and a injected water flow at a corrected rotor speed of 12.0- and covel-inlet air temperature of from 5340 to 5400 R for 12.0- and 12.5-inch-diameter exhaust nozzles. (Data for 11.5-in.-diameter 12.5-inch-diameter exhaust nozzles.) These curves were obtained excessive tail-pipe gas temperature.) These curves were obtained by cross-plotting curves of engine performance against rotor speed by cross-plotting curves of engine performance against rotor speed from the data in table I. Figure 5(a) shows a graph of thrust from the data in jected water flow. For an injected water flow of 2.0 pounds per second, a thrust of 1755 pounds, or an increase of 2.0 pounds, was obtained using the 12.5-inch-diameter exhaust nozzle; and a thrust of 1935 pounds, or an increase of 345 pounds, was obtained with the 12.0-inch-diameter exhaust nozzle. These values tained with the 12.0-inch-diameter exhaust nozzle. These values represent a 23.2-percent thrust increase for the 12.5-inch-diameter exhaust nozzle and a 21.7-percent increase for the 12.0-inch-diameter The second secon The state of s 10 mm exhaust nozzle. The dashed line in figure 5(a) represents the thrust with an adjustable-area exhaust nozzle and will be discussed in the following paragraph. The tail-pipe gas temperatures decreased appreciably with injection of water for both exhaust nozzle sizes (fig. 5(b)). The excessive tail-pipe gas temperatures obtained with the 12.0-inch-diameter exhaust nozzle at points of low injection are reduced to the rated value of 1640° R by the injection of 2.0 pounds per second of water. The reduction in temperature with injection together with the higher thrust provided by the use of the smaller exhaust muzzle (fig. 5(a)), indicates that in order to realize fully the benefits of water injection the engine should be equipped with a variable-area exhaust nozzle. The thrust available when the exhaust-nozzle area is reduced sufficiently during injection to maintain the rated tailpipe gas temperature, as shown by the daeled line in figure 5(a), was obtained by crose-plotting curves of thrust and tail-pips gas temperature against exhaust-nozzle size. This curve for constant tail-pipe gas temperature shows that the thrust increases from 1425 pounds for no injection to 1935 pounds for injection of 2.0 pounde per second, representing a thrust augmentation of 35.8 percent. The leveling off of the curves of figures 5(a) and 5(b) indicates that both the increase in thrust and the reduction in tail-pipe gas temperature, and hence the effectiveness of the water injection, are reduced as the injection rate is increased. The changes in fuel flow, total liquid consumption, air flow, and compressor-outlet total pressure caused by water injection are shown in figures 5(o) to 5(f), respectively. Both the fuel flow (fig. 5(o)) and the total liquid consumption (fig. 5(d)) increase appreciably for both exhaust-nozzle eizes with injected water flow. The injection of 2.0 pounds per second of water resulted in an increase of roughly 500 pounds per hour in the fuel flow and the total liquid consumption at this injection rate was about five times as high as for no injection. The air flow (fig. 5(e)) reaches a maximum (with an increase of about 2.5 lb/sec) at an injected water flow of approximately 1.0 pound per second for both exhaust-nozzle sizes. Although the air flow reaches a maximum at an injected water flow of 1.0 pound per second, the total mass flow (air plus liquid) through the engine continues to rise with injected water flow throughout the range investigated. The compressor-outlet total pressure (fig. 5(f)) increased over a larger range of injected water flows than did the air flow, leveling off at about the same injected water flow as did the thrust and the tail-pipe gas temperature. The state of s Water-elochol injection. - The results of run D, in which the proportions of water and alcohol were varied while the total injection rate was held constant at 0.52 pound per second (corrected value) are presented in figure 6. These data were obtained for inlet-air temperature from 5370 to 5430 R and are presented for a corrected rotor speed of 16,000 rpm. Figures 8(a) and 6(b) show that at this low total injected flow small amounts of alcohol (up to 0.15 lb/sec, or 30-percent alcohol) in the injected mixture produces about the same thrust and tail-pipe gas temperature as are produced by the injection of 0.52 pound per second of water alone. Injection of mixtures richer than 0.15 pound per second of alcohol, however, resulted in less thrust augmentation and higher tail-pipe gas temperatures than the injection of the same amount of water. Because alcohol acts as additional fuel, replacing some of the extra engine fuel required during water injection, the proportion of alcohol in the injected liquid has a marked effect on the engine fuel flow (fig. 6(c)). For injection of 0.10 pound per second of alcohol and 0.42 pound per second of water, the same fuel flow is required as with no injection, and therefore no adjustment of the fuel throttle is necessary. The composition of the injected mixture for constant throttle setting, (with constant nozzle eize) from the previous observation, is approximately 20-percent alcohol by weight. Figure 6(d) shows that total liquid consumption decreases as the proportion of alcohol is increased for a constant total injected mixture flow of 0.52 pound per second. This decrease in total liquid consumption is caused by the replacement of some of the engine fuel with alcohol as the injected mixture is enriched with alcohol. Both the air flow (fig. 6(e)) and the compressor-outlet total pressure (fig. 6(f)) were higher for mixtures containing small amounts of alcohol than for mixtures rich in alcohol. These higher air flows and pressures indicate that the greatest cooling of the intake air occurred for mixtures containing a small amount of alcohol. The more rapid vaporization of mixtures rich in alcohol is apparently counteracted by the reduction in the heat of vaporization as the alcohol content is increased. The results of run E, in which the injected water flow was held constant at 1.6 pounds per second (corrected value) and the injected alcohol flow was varied, are presented in figure 7. These data were obtained for inlet-air temperatures from 541° to 547° R These and are presented for corrected rotor speeds of 16,000 and 16,500 rpm. Although the thrust values for no injection from figure 7(a) do not agree with those of figure 5(a) because of a change in normal engine performance, the percentage thrust increases brought about by injection of 1.6 pounds of water per second are about the same for both runs. The state of the second A comparison of the thrust augmentation in figures 5(a) and 7(a) shows that the addition of alcohol to an injected water flow of 1.6 pounds per second results in a greater increase in thrust than the injection of the same total flow of water alone. Moreover, the addition of alcohol to an injected water flow of 1.6 pounds per second produces a elightly lower tail-pipe gas temperature (approximately 30° F for 0.4 lb/sec alcohol) than was produced by the same total injected flow of water alone (fig. 7(b)). The curve of fuel flow against injected alcohol flow (fig. 7(c)) indicates that the sngine can be operated without adjustment of the fuel throttle with injection of 1.6 pounds per second of water and approximately 0.4 pound per second of alcohol for both rotor speeds. This mixture is in agreement with the constant-throttle-setting injection mixture of run D (approximately 20-percent alcohol by weight). Comparison of figures 5(d) and 7(d) show that the total liquid consumption is less for the injection of 1.6 pounds of water per second plus various amounts of alcohol than for the injection of an equal amount of water alone. A similar comparison of figures 5(e) and 5(f) with 7(e) and 7(f) shows that both the air-flow and compressor-outlet pressure increase more for the injection of mixtures containing alcohol than for the injection of water alone. . The foregoing comparison of the performance data presented in figures 5 and 7 indicated that the addition of alcohol to the injected liquid at high injected water flowe (approximately 1.6 lb/sec) is more effective in increasing the thrust and reducing the tail-pipe gae temperature than the addition of more water. The maximum possible thrust augmentation with water-alcohol injection was not obtained, however, because run E was conducted with only one eize exhaust nozzle, which permitted the gas temperatures to decrease as the injected flow was increased. In order to illustrate the maximum thrust augmentation that may be expected with wateralcohol injection, figure 8 is presented. , The data from figure 5(a) for water injection at a constant tail-pipe gae temperature of 1640° R (at 16,500 rpm) is replotted in figure 8 as percentage thrust augmentation against total injected
liquid flow. A curvs of the thrust augmentation available by water injection for the 12.0-inch-diameter exhaust nozzle is included for comparison. The thrust augmentation possible by water-alcohol injection is shown by dashed curves for both conditions, that is: (1) tail-pipe gas temperature maintained constant by exhaust nozzle adjustment and (2) sxhaust-nozzle diameter maintained constant at 12.0 inches. This thrust augmentation for constant tail-pipe gas temperaturee was obtained by multiplying the augmentation provided by 1.6 pounds per second of water alone (from fig. 5(a)) by both the ratio of the thrust increase with alcohol injection shown in figure 7(a) and the ratio of the estimated thrust increase obtained when the exhaust-nozzle size was sufficiently reduced to raise the gas temperatures of figure 7(b) to a constant value. This adjustment of the data to a common exhaust-gas temperature was based on cross plots of thrust and temperature against exhaust-nozzle size obtained from the data without injection. A maximum possible thrust augmentation of 40 percent for injection of 1.6 pounds per second of water and 0.4 pound per second of alcohol for a rotor speed of 16,500 rpm and a cowl-inlet-air temperature from 534° to 543° R is indicated by the curve obtained from this analysis of the data. ### Kerosene and Carbon-Dioxide Injection The investigation of engine performance with injection of refrigerants that were considered of secondary importance were the injection of kerosene and carbon dioxide. Kerosene injection. - The uncorrected performance data for runs with kerosene injection are presented in figure 9 for a rotor speed of 16,500 rpm, an ambient cell temperature of about 5350 R, and a 12.5-inch-diameter exhauet nozzle. Figure 9(a) showe that the injection of kerosene increases the thrust only 17 pounds for an injection rate of 603 pounds per hour. The tail-pipe gas temperature (fig. 9(b)) was found to be higher for the injection of kerosene than for no injection. The total kerosene flow (fig. 9(c)) was increased 235 pounds per hour at an injection rate of 603 pounds per hour into the compressor inlets at a rotor speed of 16,500 rpm. Figure 9(d) indicates that the air flow for the injection of kerosene was slightly lower than for no injection. Carbon-dioxide injection. - The uncorrected performance data from runs with carbon-dioxide injection have been plotted in figure 10 against the time elapsed from the opening of the valves on the carbon-dioxide bottles. Curves of engine performance without injection have been included in the figure for comparison. The thrust increase for the injection of carbon dioxide alone was 520 pounds, representing a thrust augmentation of 23.5 percent, for an injected carbon-dioxide flow of 4.6 pounds per second (indicated rotor epeed, 16,150 rpm; ambient cell temperature, 526° to 530° R). Injection of carbon dioxide resulted in a slight decrease in tail-pipe gas temperature and considerable increase in fuel flow. Carbon-dioxide injection with water-alcohol mixture. - The uncorrected performance data for runs of the engine with injection of earbon dioxide with 1.7 pounds per second of a 9:8 mixture of The second secon The state of the state of And published water and alcohol by weight are presented in figure 11. Curves of angine performance with injection of 1.7 pounds per second of the water-alcohol mixture alone (at speede corresponding to those during injection of carbon dioxide) as well as curves of performance without injection are included for comparison. Because of difficulty with the instrumentation, no tail-pipe gas temperature measurements were made during this run. A thrust increase for injection of 3.5 pounds per second of carbon dioxide with 1.7 pounds per second of the 9:8 mixture of water and alcohol was 575 pounds representing a thrust augmentation of 36 percent. Of this thrust increase, which was obtained at an indicated rotor speed of 16,450 rpm, an ambient cell temperature from 507° to 514° R, and with an engine fitted with a constant-size exhaust nozzle, the water and alcohol contributed about 315 pounds, or about 20-percent augmentation. Thus, the injection of 3.5 pounds per second of carbon dioxide with 1.7 pounds per second of a mixture of water and alcohol prowided a thrust augmentation 16 percent higher than obtained with injection of the water and alcohol alone. ### SUMMARY OF RESULTS The following results were obtained from the investigation of the performance of a 1600-pound-thrust centrifugal-flow-type turbojet engine at zero flight speed, eea-level conditions, and with injection of various refrigerants at the compressor inlets: ### Water and Water-Alcohol Injection - 1. A thrust augmentation of 23.2 percent was obtained by the injection of 2.0 pounds of water per second at a corrected rotor speed of 16,500 rpm and for an inlet-air temperature of 5340 to R using a constant exhaust-nozzle diameter of 12.5 inchee. This thrust augmentation was increased to 35.8 percent by adjustment of the exhaust-nozzle size to maintain a constant rated tailpipe gas temperature of 1640° R. - 2. In the low flow range of water-alcohol injection (approximately 0.52 lb/sec of mixture), the thrust augmentation decreased slightly as the injected mixture was enriched with alcohol. - 5. At high injected water flows (approximately 1.6 lb/eec), the addition of alcohol to the injected liquid was more effective than the addition of more water. A maximum thrust augmentation of 40 percent is available by the injection of 1.6 pounds of water 8 38 100 per second and 0.4 yound of alcohol per second when the tail-pipe gas temperature is maintained constant at the rated value of 1640° R by exhaust-nozzle adjustment. 4. Operation of the engine without adjustment of the fuel throttle from the normal operating position (at the same speed) is poseible by selecting an injection mixture of alcohol and water that is roughly 20-percent alcohol by weight. ### Kerosene and Carbon-Dioxide Injection - 1. The increase in thrust with injection of kerosene was very slight reaching a maximum of 17 pounds for an injection rate of 605 pounds per hour at an indicated rotor speed of 16,500 rpm, an inlet-air temperature of 5350 R, and a constant-area exhaust nozzle of 12.0-inch diameter. The accompanying increase in total fuel flow was 235 pounds per hour. - 2. Thrust increase for the injection of 4.6 pounds per second of carbon dioxide alone was 320 pounds, representing a thrust augmentation of 23.5 percent at an indicated rotor speed of 16,150 rpm, an inlet-air temperature of 526° to 530° R, and with a 12.0-inchdiameter exhaust nozzle. - 5. Thrust increase for the injection of 3.5 pounds per second of carbon dioxide with 1.7 pounds per second of a 9:8 mixture of water and alcohol, at an indicated rotor speed of 16,450 rpm, an inlet-air temperature of 507° to 514° R, and with a 12.0-inch-diameter Property (Control of the Control ្នុះព្រះសម្តីទៅលើ ដែលប្រជាពលមាននៅ នេះបានច្រើន ប្រធានប្រជាពលមាន ប្រធានប្រជាពលមាន ប្រធានប្រជាពលមាន នេះបានប្រធានប ការស្នាក់សម្តីទី២ ទាក់បាន បានទៅ និយា ទី២ ទី២ សម្តីទី២ សម្តេច សម្តី បានប្រធានប្រធានប្រធានប្រធានប្រធានប្រធានប្រ ប្រជាពលរបស់ សម្តេច បានប្រធានប្រធានប្រធានប្រធានប្រធានប្រធានប្រធានប្រធានប្រធានប្រធានប្រធានប្រធានប្រធានប្រធានប្រ > the state of s and the state of The second secon A section of the second section is exhaust nozzle was 575 pounds. This increase represents a total thrust augmentation of 36 percent of which 16 percent was contributed by the carbon dioxide. Flight Propulsion Research Laboratory, Mational Advisory Committee for Aeronautics, Cleveland, Ohio. TABLE I - PERFORMANCE OF CENTRIPUGAL-PLON-TYPE TURBOJET ENGINE WITH | Run | Baro- metri pres- sure (1b/sq in. abso- lute) | diame | er | ater flo | | Roto | speed
(rpm) | d and | | st. F | - | flow, | s-lsv | Puel fl | tions | |--
---|-------|---------------------------------------|------------------------------|---|---|--|---|--|--
--|---|---|---|---| | (a) | - | on of | | ad Corr | ected | Read | Correc | ted Re | ad Cor | rected | Read | Com | | | | | A1 A2 A3 A4 A5 A6 A7 A8 A10 A11 A12 A13 11 A16 11 A16 11 A17 11 A16 11 A16 11 A17 11 A16 11 A16 11 A17 11 A16 11 A17 11 A16 11 A17 A17 A17 A17 A17 A17 A17 A17 A17 | 14.42
14.42
14.42
14.42
14.42
14.42
14.42
14.42
14.42
14.42
14.42
14.43
14.43
14.43
14.43
14.43
14.43
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
14.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39
15.39 | 12.5 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | .515
.520
.520
.520 | 11
11
12
14
15
16
11
12 |
0,990
11,978
3,004
4,038
5,040
5,553
6,967
485
9,970
1,000
1,970
1,000
1,970
1,000
1,970
1,000
1,970
1,000
1,970
1,000
1,970
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1 | 10,90
11,85
12,686
15,311
16,83
16,243
11,896
13,861
14,843
15,686
16,243
16,243
15,686
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,243
16,24 | 5 65 | 23
19
19
10
14
4
4
4
9
8
8
11
11
11
11
11
11
11
11
11
11
11
11 | 431
530
652
607
996
1098
11340
2560
2867
2098
273318
287
299
27710
2884
2496
31,
299
27,
200
281
291
301
291
301
301
406
31,
301
406
301
406
406
406
406
406
406
406
406
406
406 | 17.57
10.41
121.69
26.21
18.18
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12
19.12 | 18 20 22 | .07
.03
.03
.06
.06
.06
.06
.06
.06
.06
.06
.06
.06 | 149 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 812
906
022
162
431
6704
113
5704
113
577
63
777
75
75
75
75
75
75
75
75
75
75
75
75 | | | | | | 0
0
0
0
•520 | 13,94
14,53
15,01
15,50
16,03
16,47
11,06
11,993
12,999 | 9 14
9 14
15
15
16
10
9 |
767
323
798
1248
1739
174
155 | 694
846
953
054
165
304
435
501
511 | 578
712
868
978
1082
1199
1340
1475
514
627
764 | 20.9
23.0
24.3
25.3 | 2 | 19.67
11.78
13.94
5.39
6.46
7.77
7.08
1.10 | 937
1063
1202
1302
1402
1523
1678
1835
962
1042
1159 | 362
950
1077
1218
1317
1418
1536
1693
1851
977
1057
1176 | | INJECTION OF WATER AND WATER-ALCOHOL NIXTURES AT COMPRESSOS INLETS seel imlet: temperature T_0 , $512^0~\text{R}_1$ pressure P_0 , 14.70~lb/aq in.] | G000 6140 | llquld
sption, W _t | total | Cowi-inlet
total pres-
sure, Po
(lb/sq in. | _ ' | Compressional temporal (5) | eretuz
R) | tlet
re, 7g | outle | l pres- | Tail-pipe
indicated
gas temper-
ature, Ty
(°R) | | | |--------------|----------------------------------|----------------------|---|------|----------------------------|--------------|------------------|-------|-----------------|--|----------|--| | | | tempers-
ture, To | absolute) | Une | hlelded
type | 3te | agnation
type | (1b/ | eq In.
lute) | | | | | Read | Corrected | Read | Reed | Read | Corrected | Read | Corrected | Read | Corrected | Read | Correcte | | | (a) | In lection | of sater | | | | | | | | | | | | 0.223 | 0.226 | 327 | 14,40 | 675 | 665 | 670 | 660 | 26,01 | 26.55 | 1399 | 1378 | | | .249 | .232 | 530 | 14.32 | 705 | 590 | 702 | 687 | 26.91 | 29.52 | 1415 | 1387 | | | .201 | .284 | 529 | 14.39 | 736 | 722 | 731 | 717 | 32.35 | 35.04 | 1433 | 1406 | | | .519 | .323 | 530 | 14,36 | 758 | 752 | 762 | 746 | 36.23 | 37.03 | 1473 | 1444 | | | .365 | .362 | 552 | 14.37 | 808 | 768 | 799 | 780 | 40.84 | 41.77 | 1524 | 1487 | | | .394 | .398 | 534 | 14.57 | 625 | 803 | 817 | 794 | 45.27 | 44.27 | 1561 | 1317 | | | 424 | .427 | 537 | 14.36 | 547 | 812 | 833 | 807 | 45.44 | 46.49 | 1506 | 1332 | | | .470 | .473 | 336 | 14,36 | 887 | 840 | 854 | 827 | 48.36 | 49.30 | 1534 | 1601 | | | .777 | .796 | 526 | 14.32 | 580 | 372 | 580 | 572 | 30.09 | | 1336 | 1318 | | | .842 | .861 | 550 | 14.37 | 578 | 664 | 673 | 532 | 36.19 | 32.05 | 1362 | 1353 | | | .892 | .215 | 533 | 14.36 | 740 | 721 | 727 | 706 | 45.27 | 44,28 | 1444 | 1406 | | | -937 | .981 | 534 | 14.35 | 778 | 756 | 765 | 742 | 47.92 | 42.06 | 1343 | 1300 | | | 1.014 | 1.058 | 636 | 14.33 | 808 | 782 | 794 | 762 | 51.36 | 52.62 | 1611 | 1560 | | | 882 | .903 | 531 | 14.36 | 576 | 363 | 576 | 363 | 29.86 | 30.37 | 1342 | 1312 | | | .909 | .232 | 532 | 14.33 | 523 | 679 | 586 | 574 | 33.74 | 34.55 | 1343 | 1312 | | | 243 | .273 | 334 | 14.33 | 635 | 615 | 630 | 612 | 38.26 | 32.19 | 1372 | 1333 | | | . 296 | 1.023 | 535 | 14.33 | 714 | 593 | 707 | 686 | 43.22 | 44.32 | 1434 | 1391 | | | 1.072 | 1,101 | 538 | 14.33 | 758 | 741 | 734 | 727 | 48.82 | 60.08 | 1550 | 1475 | | | 1.123 | 1.152 | 536 | 14.32 | 792 | 764 | 780 | 752 | 51.72 | | 1596 | 1540 | | | 1.188 | 1.222 | 531 | 14.34 | 395 | 582 | 598 | 584 | 38.45 | | 1354 | 1523 | | | 1.241 | 1.280 | 534 | 14,33 | 635 | 517 | 647 | 622 | 43.55 | 44.77 | 1410 | 1370 | | | 1.315 | 1,356 | 537 | 14.33 | 710 | 586 | 706 | 582 | 49.31 | | 1505 | 1433 | | | 1.373 | 1.415 | 340 | 14.32 | 755 | 726 | 741 | 712 | 52.61 | 53.97 | 1570 | 1509 | | | 1.785 | 1.841 | 533 | 14.34 | 504 | 589 | 605 | 690 | 44.01 | 45.11 | 1394 | 1360 | | | 1.513 | 1.575 | 334 | 14,33 | 510 | 593 | 518 | 601 | 47.20 | 45.48 | 1440 | 1400 | | | 1,858 | 1.218 | 336 | 14.33 | 516 | 596 | 533 | 613 | 50.39 | | 1490 | 1443 | | | 1,907 | 1,271 | 532 | 14.52 | 523 | 500 | 551 | 536 | 53.42 | | 1554 | 1496 | | | 2.486 | 2.674 | 534 | 14.33 | 515 | 528 | 515 | 598 | 50,44 | | 1466 | 1425 | | | 2.531 | 2.629 | 534 | 14.32 | 521 | 604 | 590 | 603 | 53.24 | 54.53 | 1312 | 1476 | | | 0.236 | 0.239 | 830 | 14.34 | 584 | | 675 | | 26.52 | 27.26 | 1465 | 1433 | | | .260 | .264 | 530 | 14.33 | 706 | 690 | 701 | 686 | 28.93 | | 1460 | 1429 | | | .293 | ,299 | 532 | 14,33 | 742 | 724 | 734 | 715 | 32.48 | 33.33 | 1496 | 1460 | | | -334 | .336 | 533 | 14.32 | 774 | 734 | 753 | 745 | 36.17 | 37.12 | 1535 | 1423 | | | -362 | .365 | 535 | 14.32 | 793 | | 784 | 761 | 38.77 | 39.80 | 1565 | 1519 | | | .362
.423 | .394 | 533
536 | 14.31 | 812 | 787 | 804 | 780 | 40.98 | 42.09 | 1525 | 1575 | | | .423 | .427 | 536 | 14.31 | 833 | 806 | 822 | 725 | 43.32 | 44.55 | 1843 | 1521 | | | .466 | .470 | 538 | 14.30 | 855 | | 843 | 814 | 45.19 | 47.45 | 1720 | 1658 | | | .510 | .514 | 538 | 14.30 | 872 | 840 | 862 | 831 | 48.74 | 50.09 | 1766 | 1708 | | | .757 | .721 | 529 | 14.33 | 568 | | 567 | 556 | 27.18 | 27.87 | 1390 | 1363 | | | .789 | .513 | 531 | 14.33 | 575 | | 575 | | 30.32 | | 1404 | 1373 | | | .822 | .847 | 351 | 14.32 | 522 | 578 | 396 | 582 | 34.43 | 35.35 | 1406 | 1376 | | TABLE I - PERFORMANCE OF CENTRIFUGAL-FLOW-TYPE TURBOJET ENGINE WITH | Run | Baro-
metric
pres-
sure
(1h/eq
in. | Enchaust-
nostle
diameter
(in.) | (1b/see) | | Rotor | opee6, N
(rpm) | 77 | hrust, P | Air
(1 | flow, W _e
b/see) | Fuel flow, W _f (lb/hr) | | | | | |--|---|--|---|---|--|--|---|--|---|--|--|--|--|--|--| | | abso-
lute) | | Ree6 | Corrected | Read |
Correcte6 | Ree6 | Corrected | Reed | Corrected | Read | Correcte | | | | | (0) | | | | | | | | | | | | | | | | | 813
814
816
816
817
818
819
821
822
823
824
625
826
826
829
830
831
832 | 14.36 | 12,0 | 0.50
.50
.50
.60
.60
.60
.60
.60
.60
.63
.83
.83
1.336
1.335
1.335
1.335 | 0,320
-320
-320
-320
-623
-625
-620
-625
-625
-625
-626
-626
-627
-627
-627
-627
-627
-627 | 14,039
13,030
13,501
16,042
16,511
11,961
16,039
16,540
13,279
16,035
16,023
16,323
14,960
15,279
16,323
16,323
16,323
16,536 | 13,873
14,796
15,860
16,754
16,805
11,847
12,849
13,783
14,819
16,760
16,222
13,825
14,798
13,743
16,213
14,772
13,286
13,743
16,213
14,772
15,745
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16,213
16 | 961
1183
1303
1456
1606
611
765
947
1195
1479
1644
959
1221
1525
1685
1213
1360
1656
1739
1549 | 987
1213
1339
1497
1651
6827
785
972
1228
1320
1690
985
1234
1566
1734
1246
1416
1600
1788
1392 | 24.84
27.11
28.17
29.44
30.42
119.42
21.98
24.49
27.31
29.64
30.82
24.44
27.30
30.03
31.13
26.79
26.79
26.79
26.32
29.89
31.19
29.19 | 25.84
26.30
29.40
30.81
31.86
20.14
22.76
25.47
26.46
32.31
25.37
28.60
32.31
25.37
28.60
32.31
25.37
28.64
32.31
33.64
33.64
33.64
33.64
33.64 | 1311
1522
1633
1832
2004
1064
1177
1317
1853
2043
1360
1693
1908
2106
1690
1690
2033
2242
2200
2401 | 1328
1539
1674
1844
1802
2022
1079
1355
1350
1370
2060
1361
1923
2123
1712
1872
2053
2228
2428 | | | | | C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C12
C12
C12
C13
C14
C19
C16
C16
C18
C19
C18 | 14.34 | 11.5 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10,887
11,984
13,018
14,001
14,323
13,044
15,556
11,997
13,998
14,635
15,014
16,548
16,046
11,994
13,005
13,999
14,617
14,973
13,602
13,602 | 10,788 11,830 12,626 13,767 14,252 14,736 13,236 13,776 14,292 14,734 16,243 16,716 11,828 12,800 13,731 14,260 14,666 16,168 | 488
616
768
939
1046
1163
1303
669
1043
1176
1302
1458
1616
667
840
1033
1187
1313
1473
1473 | 601
632
769
984
1076
1197
1339
687
1209
1339
1500
1662
685
563
1082
1220
1350
1517 | 16.70
16.73
20.76
22.80
23.98
25.03
26.16
19.27
24.22
25.49
26.68
27.72
28.91
19.27
28.91
29.58
27.73
29.02 | 17.34
19.47
21.66
23.62
23.11
26.29
27.46
20.04
25.20
26.65
27.93
29.08
30.25
20.07
22.56
26.35
26.35
26.35
27.72
20.06 | 861
9L9
1137
1306
1412
1546
1696
1093
1407
1338
1670
1846
2040
1119
1249
1430
1563
1863
2063 | 873
1002
1160
1319
1424
1656
1707
1108
1423
1554
1665
1865
1133
1263
1443
1577
1692
1877
2071 | | | | 282 INJECTION OF WATER AND WATER-ALCOHOL MIXTURES AT COMPRESSOR INLETS - Continue6 | Total liquid consumption, Wt (lb/sec) | | Cowl-
inlet
total
tempere- | Coul-inlet
total prea-
aure, Po
(lb/aq in. | | Compress
total temp | eretu | | tot | al pres- | Teil-pipe
Indiceted
gas temper-
ature, Ty | | |---------------------------------------|-------------|-------------------------------------|---|------|------------------------|-------|--------------------|-------|----------------------------|--|-----------| | | | ture, To | ebsolute) | Un | shiel6e6
type | St | Stegnation
type | | e, Po
/aq In.
plute} | | (OR) | | Reed | Corrected | Read | Rea6 | Rea6 | Correcte6 | Rea6 | Corrected | Ree6 | Corrected | Ree5 | Corrected | | (e) 1 | injection o | of water - | continue6 | | | | | | | | | | 0.864 | 0.889 | 533 | 14.31 | 663 | 646 | 660 | 643 | 39.11 | 40.16 | 1455 | 1417 | | .923 | .947 | 536 | 14.31 | 732 | 709 | 720 | 898 | 43.88 | 45.00 | 1522 | 1475 | | .960 | .985 | 536 | 14.31 | 752 | 729 | 741 | 716 | 46.46 | 47.76 | 1560 | 1512 | | 1.009 | 1.039 | 538 | 14.30 | 779 | 751 | 768 | 741 | 49.38 | 50.76 | 1644 | 1585 | | 1.057 | 1.087 | 539 | 14.30 | 801 | 772 | 790 | 761 | 52.03 | 53.50 | 1711 | 1648 | | .896 | .920 | 531 | 14.33 | 574 | 561 | 574 | 561 | 30.17 | 30.95 | 1392 | 1361 | | .927 | .952 | 530 | 14.32 | 585 | 573 | 583 | 571 | 34.25 | 35.15 | 1400 | 1371 | | .966 | .996 | 532 | 14.31 | 620 | 604 | 612 | 596 | 38.57 | 39.61 | 1436 | 1400 | | 1.031 | 1.061 | 534 | 14.30 | 710 | 690 | 699 | 679 | 44.12 | 45.33 | 1514 | 1471 | | 1.115 | 1.145 | 536 | 14.30 | 764 | 739 | 750 | 726 | 49.72 | 51.11 | 1625 | 1573 | | 1.160 | 1.202 | 540 | 14.29 | 791 | 761 | 776 | 748 | 52.82 | 54.31 | 1705 | 1640 | | 1.206 | 1.243 | 531 | 14.32 | 594 | 581 | 594 | 581 | 38.82 | 39.85 | 1424 | 1392 | | 1.273 | 1.313 | 536 | 14.31 | 622 | 603 | 631 | 611 | 44.57 | 48.76 | 1495 | 1446 | | 1.360 | 1.404 | 539 | 14.30 | 708 | 682 | 702 | 676 | 50.56 | 61.96 | 1612 | 1553 | | 1.413 | 1.460 | 539 | 14.29 | 752 | 724 | 738 | 710 | 53,60 | 55.15 | 1696 | 1633 | | 1.804 | 1.866 | 534 | 14.31 | 604 | 587 | 606 | 569 | 44.32 | 45.53 | 1476 | 1435 | | 1.849 | 1.915 | 535 | 14.30 | 609 | 590 | 814 | 595 | 47.81 | 49.13 | 1529 | 1462 | | 1.900 | 1.966 | 537 | 14.29 | €16 | 595 | 624 | 603 | 51.20 | 52.64 | 1598 | 1544 | | 1.958 | 2,024 | 338 | 14.29 | 623 | 602 | 645 | 623 | 55.96 | 57.55 | 1661 | 1604 | | 2.511 | 2,598 | 536 | 14.30 | 615 | 596 | 614 | 595 | 50.90 | 52.31 | 1570 | 1621 | | 2,577 | 2.670 | 536 | 14.29 | 620 | 600 | 620 | 600 | 54.83 | 56.38 | 1660 | 1607 | | 0.239 | 0.242 | 532 | 14.32 | 680 | 663 | 674 | 658 | 26.03 | 26.71 | 1525 | 1488 | | .275 | .278 | 633 | 14.32 | 710 | 691 | 706 | 687 | 29.32 | 30.10 | 1553 | 1512 | | .316 | | 835 | 14.31 | 744 | 722 | 733 | 711 | 32.86 | 33.74 | 1600 | 1552 | | .363 | .366 | 537 | 14.31 | 779 | 753 | 772 | 746 | 36.74 | 37.74 | 1636 | 1581 | | .392 | .396 | 539 | 14.30 | 799 | 769 | 791 | 762 | 39.00 | 40.07 | 1673 | 1611 | | | .432 | 541 | 14.30 | 621 | 786 | 812 | 779 | 43.03 | 44.22 | 1722 | 1652 | | .471 | | 541 | 14.30 | | | | | | | 1762 | 1710 | | .804 | .628 | 533 | 14.31 | 579 | 664 | 879 | 564 | 30.50 | 31.32 | 1451 | 1413 | | .891 | .915 | 536 | 14.30 | 670 | 649 | 675 | 654 | 39.05 | 40.12 | 1535 | 1486 | | .927 | .957 | 837 | 14.30 | 711 | 667 | 704 | 680 | 41.75 | 42.92 | 1585 | 1532 | | .964 | .993 | 539 | 14.29 | 738 | 711 | 726 | 699 | 44.16 | 45.40 | 1635 | 1574 | | 1.013 | 1.042 | 540 | 14.29 | 766 | 736 | 754 | 725 | 47.11 | 48.45 | 1707 | 1641 | | 1.067 | 1.096 | 541 | 14.29 | 790 | 756 | 770 | 739 | 49.96 | 61.36 | 1790 | 1717 | | .911
| .940 | 634 | 14.31 | 577 | 561 | 577 | 561 | 30.40 | 31.22 | 1442 | 1401 | | .947 | .976 | 536 | 14.31 | 587 | 566 | 586 | 567 | 34.58 | | 1470 | 1423 | | .997 | 1.031 | 538 | 14.30 | 622 | 600 | 632 | 610 | 39.20 | | 1530 | 1476 | | 1.034 | 1.068 | 538 | 14.30 | 675 | 651 | 674 | | 41.90 | | 1590 | 1534 | | 1.067 | 1.110 | 541 | 14.29 | 715 | 686 | 709 | | 44.60 | | 16 27 | 1581 | | 1.118 | 1.151 | 542 | 14.29 | 746 | 714 | 735 | | 47.35 | | 1712 | 1639 | | 1.173 | 1.210 | 545 | 14.28 | 772 | 735 | 762 | 726 | 30.45 | 51.90 | 1805 | 1719 | TABLE I - PERPONIANCE OF CENTRIFUGAL-FLOW-TYPE TURBOJET ENGINE WITH INJECTION | Run | pres-
sure
(15/eq
in, | Exhquat-
nozzle
dlameter
(in.) | Wate (| r flow, We | Alee | Alcohol flow, W _{el} | | speet, t
(rpm) | T | hrust, F
(1b) | Air flow, We (1b/eee) | | | | | |--|--------------------------------|---|--|---|---|---|--|--|--|---|---|---|--|--|--| | | lutel | | Read | | Read | Corrected | Sead | Corrected | 2002 | Correcte? | Read | Carrest | | | | | (0) | | | | | | | | | | | | | | | | | C21
C29
C23
C24
C26
C26
C27
C28
C29
C30
G31
G39 | 14,54 | 11.6 | 0.83
.83
.83
.83
.83
1.336
1.335
1.335
1.335 | 0.870
.865
.870
.870
.878
.672
1.400
1.405
1.405
8.015 | | | 13,955
14,497
19,083
15,496
15,844
14,986
15,495
19,097
19,811
15,777
15,327 | 13,296
14,700
15,129
10,848
10,473
14,294
10,174
10,750
15,471
15,488
15,026 | 1048
1197
1548
1509
1778
1980
1341
1521
1764
1639
1894
1485 | 1077
1830
1386
1882
1827
1667
1578
1868
1805
1879
1870 | 24.04
22.42
26.82
28.11
29.22
78.89
26.22
97.02
29.52
99.57
27.72
86.42 | 25.17
26.82
28.12
29.85
31.59
30.44
27.50
29.05
30.83
30.03 | | | | | (b) | In jest | ion of wat | ter-al | cohol mixt | ure4 | | | | | | 1 | | | | | | D1
D2
D3
D4
D6
D6
D7
D8 | 14.47 | 18.0 | | 0
0
.880
.419
.319
.808
.104 | 0 | .104 | 10,002
15,026
12,062
12,047
12,055
10,040
10,029
12,036 | 15,782
15,365
15,795
15,742
15,740
15,295
12,664
15,566 | 1204
1150
1427
1422
1408
1405
1391
1376 | 1308
1172
1456
1450
1450
1433
1419
1402 | 97.52
99.39
29.35
29.52
29.55
29.10
22.86
29.70 | 20.65
27.35
30.51
30.88
30.54
30.34
50.18
80.92 | | | | | | 14-17 | 19.0 | 0
0
0
1.42
1.42
1.42
1.49
1.49
1.49
1.49 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 14,087
15,068
18,038
18,038
18,482
18,000
18,492
18,007
18,560
18,984
18,503
18,503
18,503
18,503
18,503
18,503
18,503
18,503 | 13,797 14,740 15,952 16,107 18,132 15,270 18,112 18,950 18,147 15,957 12,109 15,109 15,109 15,109 15,109 | 822
995
1818
1348
1458
1468
1468
1470
1868
1474
1660
1497
1668
1470
1480 | 000
1035
1262
1401
1701
1587
1712
1887
1735
1536
1730
1542
1738
1536
1536
1542
1738
1532
1742 | 20.46
24.40
26.50
97.55
30.00
26.00
30.19
26.06
30.25
30.29
90.02
30.02
30.05
20.05
20.05
20.05
20.05 | 23.86
25.00
25.00
22.36
30.04
30.72
50.26
30.40
52.32
30.72
30.72
30.73
30.73
30.73
30.73 | | | | | L | l flow, | 1 | Total 11
Consumpti
(1b/se | dore. | Cowl-
inlet
total
tempera-
ture, T _C | Cowl-ini
total pr
sure, Po
(lb/sq :
absolut | et
es- | | Comp | ressor
temper
(OR) | r-outlet
ature, 1 | _ | total | Dres- | | Tail-pipe
indicated
gas temper | |--|--|--|---|---|--
--|---|--|--|--|--|--|--|--|--|--| | Read (a) | Correc | | | ected | Read | Read | - | - | ype | _ | Stagnat | ion | (lb/s
absol | a In- | - 1 | ature, Ty | | 1470 | Inject | ion o | f water - | Concl | uded | | - 1 | ead C | orrec | ted R | ead Corre | ected R | | _ | + | | | 1610
1759
1920
1920
2235
2040
1840
2038
2304
2150
2345
2160
(b) II | 148:
1629
1770
1932
9246
2053
2053
2320
2164
2362
2177 | 1.
1.
1.
1.
1.
1.
2.5
8.5 | 277 1.: 319 1.: 3519 1.: 3563 1.4 451 1.4 3597 1.4 846 1.9 901 1.9 975 2.0 971 2.67 20 2.62 water-ale | 07
99
44
15
70
19
66
11
0 | 539
536
542
544
544
540
541
542
542
541
540
340 | 14.30
14.29
14.29
14.29
14.28
14.28
14.29
14.29
14.29
14.29 | 6.6 | 10 | 573
639
608
651
696
687
583
587
593
594
595
615 | 6 | 6 583
6 591
8 602
5 599 | 6 34
3 45
5 46
5 52
5 45 | 0.15
0.14
0.09
0.66
0.05
0.04
0.36
0.41 | 40.2
43.3
46.4
54.1
51.5
46.3
49.7
53.92
51.73
51.58
48.38 | 2 152
2 157
6 162
6 167
181
173
160
166 | 1522
1552
1551
1607
2 1729
2 1652
1540
1 1595
1 1678 | | 526 | 1617
1686
1589
1403
1292
1137 | 1.00
.96
.93
.89
.86
.82
0.337
.384 | 1.025
.988
6.953
.911
.860
.836 | 1 8 | 537
539
539
540
542
542
542
543 | 14.42
14.42
14.41
14.41
14.41
14.41
14.42
14.42 | 86:
84:
781
790
797
806
810
824 | 75 | 330
314
357
360
366
72
76
38 | 853
838
774
766
792
802
806
817 | 821
810
745
756
762
768
772
781 | 46.0
43.3
49.2
49.1
49.1
48.6
48.4
48.0 | 15
10
0
0
6
6 | 46.93
44.18
50.18
50.08
50.08
19.63
19.43
18.98 | 1797
1750
1691
1680
1680
1695
1705 | 1750
1691
1628
1617
1615
1624
1635
1641 | | 190 190 1990 1995 1190 1298 1190 129 | 1122 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | .494
2.098
2.046
2.096
2.256
1.98
3.24
2.72
3.84
3.41
4.51
4.04
5.11 | | 5 | 67 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.1 |
4-12
4-12
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11 | 825
864
887
635
629
618
630
629
629
620
629
620
620
620
620
620
620
620
620
620
620 | 79
82
84
600
591
602
595
600
595
596
596
592
598 | 0 3 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 781
818
F57
654
631
627
617
621
615
621
515
521 | 590
590
589
589 | 35.91
40.03
47.11
52.60
49.61
53.05
49.66
53.30
49.71
53.39
49.71
53.39
49.96
53.34
50.15
53.49 | 45
58
51
55
51
55 | 0.04 1
0.02 1
0.69 1
0.75 1
0.84 1
0.63 1 | | 1514
1566
1662
1722
1604
1537
1594
1525
1594
1520
1574
1509
1563
1507 | COMMITTEE FOR AEROMAUTICS Fig. I NACA RM No. E7G23 0 Figure 1. - Diagram of setup for refrigerant-injection investigations on centrifugal-flow-type turbojet engine. Figure 2. - Pressure and temperature instrumentation and regrigerant-injection equipment for a centrifugal-flow-type turbojet engine. CIR 4.140 Figure 5. - Engine performance for various injected water flows for runs A and B. Corrected rotor speed, 16,500 rpm; cowl-inlet air temperature, 5340 to 5400 R. (c) Fuel flow. Figure 5. - Continued. Engine performance for various injected water flows for runs A and B. Corrected rotor speed, 16,500 rpm; cowl-inlet air temperature, 5340 to 5400 R. Figure 5. - Continued. Engine performance for various injected water flows for runs A and B. Corrected rotor speed, 16,500 rpm; cowi-injet air temperature, 5340 to 5400 R. (f) Compressor-outlet total pressure. Figure 5. - Concluded. Engine performance for various injected water flows for runs A and B. Corrected rotor speed, 16,500 rpm; cowi-iniet air temperature, 5340 to 5400 R. Figure 6. - Engine performance for various water-alcohol mixtures injected during run D. Corrected total mixture flow, approximately 0.52 pound per second; corrected rotor speed, 16,000 rpm; exhaust-nozzle diameter, 12.0 inches; cowl-inlet air temperature, 5370 to 5430 R. Figure 6. - Continued. Engine performance for various water-alcohol mixtures injected during run D. Corrected total mixture flow, approximately 0.52 pound per second; corrected rotor speed, 16.000 rpm; exhaust-nozzie diameter, 12.0 inches; cowl-inlet air temperature, 5370 to 5430 R. Figure 6. - Concluded. Engine performance for various water-alcohol mixtures injected during run D. Corrected total mixture flow, approximately 0.52 pound per second; corrected rotor speed, 16.000 rpm; exhaust-nozzle diameter, 12.0 inches; cowl-inlet air temperature, 5370 to 5430 R. Figure 7. - Engine performance for various water-alcohol mixtures injected during run E. Corrected water flow nearly constant at 1.6 pounds per second; exhaust-nozzle diameter, i2.0 inches; cowl-inlet air temperature, 5410 to 5460 R. Figure 7. - Continued. Engine performance for various water-alcohol mixtures injected during run E. Corrected water flow nearly constant at 1.6 pounds per second; exhaust-nozzle diameter, 12.0 inches; cowl-inlet air temperature, 5410 to 5460 R. Figure 7. - Concluded. Engine performance for various water-alcohol mixtures injected during run E. Corrected water flow nearly constant at 1.6 pounds per second; exhaust-nozzle diameter, 12.0 inches; cowlinet air temperature, 5410 to 5460 R. Figure 8. - Thrust augmentation of centrifugal-flow-type turbojet engine by water and water-alcohol injection at a corrected rotor speed of 16,500 rpm; cowl-inlet air temperature, 5340 to 5430 R. (a) Thrust. Figure 9. - Engine performance for various injected kerosene flows. Average ambient cell temperature, 535° R; 12.5-inch-diameter exhaust nozzle. Figure 9. - Continued. Engine performance for various injected kerosene flows. Average ambient cell temperature, 535° R; 12.5-inch-diameter exhaust nozzle. Figure 9. - Continued. Engine performance for various injected kerosene flows. Average ambient cell temperature, 5350 R; 12.5-inch-diameter exhaust nozzie. 792 Figure 9. - Concluded. Engine performance for various injected kerosene flows. Average ambient cell temperature, 535° R; 12.5-inch-diameter exhaust nozzle. 792 Figure 10. - Effect on engine performance of injection of carbon dioxide. Ambient cell temperature, 526° to 530° R; ambient cell pressure, 14.27 to 14.28 pounds per square inch; 12.5-inch-diameter exhaust nozzle. Figure 11. — Effect on engine performance of injection of carbon dioxide with 1.7 pounds per second of 9:8 mixture by weight of water and alcohol (alcohol consisting of 50-percent ethyl alcohol and 50-percent pure synthetic methyl alcohol). Ambient cell temperature, 5070 to 5140 R; ambient cell pressure, 14.50 to 14.51 pounds per square inch; 12.5-inch-diameter exhaust nozzle. ## REE . 1015 ``` BOIR FOR GO A (19 KG) DESTRICTED \AM= 10151 Jones, William L. DIVISION: Power Plenta, Jet and Turbine (5) ORIG. AGENCY NUMBER Dowman, Herry W. Parformance (16) SECTION: CROSS REFERENCES: Thruat augmentation (94090): Enginee. RM-E7G23 Jet propulsion - Turbo-jet (33750); REVISION Combustion - Mixture effects (23630) AUTHOR(S) AMER. TITLE: Investigation of thrust augmentation of e 1600-pound thrust centrifugal-flow-type turbojet engine by injection of refrigerants et compressor inlets FORG'N. TITLE- ORIGINATING AGENCY: National Advisory Committee for Aeronautics, Weshington, D. C. TRANSLATION. COUNTRY I LANGUAGE FORG'N CLASS U. S.CLASS. I FEATURES DATE PAGES ILLUS. U.S. 23 Eng. Restr. Aug 47 44 tables, diagrs, graphs ADSTRACT Inveatigations wars conducted to determine effectiveness of refrigerents in increasing thruat of turbojet engines. Mixtures of weter and elcohol were injected for a range of total flows up to 2.2 lb/sec. Kerosene was injected into inlete covering e range of in- jected flows up to approximataly 30% of normal engine fuel flow. Injection of 2.0 lb/sec of watar alone produced en increase in thrust of 35.8% of rated engine conditions end kerosene produced a negligible increase in thrust. Carbon dioxide increased thrust 23.5%. NOTE: Requeste for copies of this report must be addressed to: N.A.C.A., Washington, D. C. AR VECHNICAL INDEX T-2, HQ., AIR MATERIEL COMMAND WRIGHT FIELD, OHIO, USAAF CUSTAINCUM ``` TROIN FORM 60 A (13 HRR 47) AT - 10151 Jones, William L. DIVISION: Power Plants, Jet and Turbina (5) ORIG. AGENCY NUMBER Dowman. Harry W. SECTION: Performanca (16) CROSS REFERENCES: Thrust augmentation (94090): Engines. RM-E7G23 . Jet propulsion - Turbo-jet (33750); REVISION AUTHOR(S) Combustion - Mixture effects (23630) AMER. TITLE: Investigation of thrust augmentation of a 1600-pound thrust centrifugal-flow-t turbojet engine by injection of refrigerants at compressor inlets FORG'N. TITLE: ORIGINATING AGENCY: National Advisory Committee for Aeronautics, Washington, D. C. TRANSLATION. ## Aug' 47 44 23 Investigations were conducted to determine effectiveness of refrigerants in increasing thrust of turbojet engines. Mixtures of water and alcohol were injected for a range of total flows up to 2.2 lb/sec. Kerosene was injected into inlets covering a range of injected flows up to approximately 30% of normal engine fuel flow. Injection of 2.0 lb/sec of water alone produced an increase in thrust of 35.8% of rated engine conditions and
kerosene produced a negligible increase in thrust. Carbon dioxide increased thrust 23.5%. NOTE: Requests for copies of this report must be addressed to: N.A.C.A., Washington, D. C. COUNTRY LANGUAGE FORG'N.CLASS U. S.CLASS. | DATE PAGES ILLUS. T-2, HQ., AIR MATERIEL COMMAND Eng. U.S. AIR TECHNICAL INDEX WRIGHT FIELD, OHIO, USAAF FEATURES tables, diagrs, graphs UNCLASSIFIED PER AUTHORITY: INDEX OF NACA TECHNICAL FUBLICATIONS DATED 31 DECEMBER 1947. note: Per outh no Ca Res abstracts he 45, ald July'53